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T E M P E R A T U R E  F I E L D  O F  A T W O - L A Y E R  

C Y L I N D E R  W I T H  V O L U M E T R I C  H E A T  S O U R C E S  

A N D  N O N S T A T I O N A R Y  B O U N D A R I E S  

A. K. Sokolov UDC 536.21:669.041 

A numer ica l -ana ly t i ca l  solut ion o f  a d i f ferent ia l  hea t - conduc t i on  equat ion  is suggested.  Ana ly t i ca l  

e x p r e s s i o n s  re lat ing the ini t ial  and  boundary  cond i t ions  o f  heat  t rans fer  to parabol ic  t empera tu re  

distributions in the layers of  the cylinder are obtained for  the end of  the calculated interval o f  time. The 

calculation of  the temperature f ie ld  is reduced to the solution of  a system o f  two ordinary differential 

equations. The error o f  the solution is analyzed. 

Systems of dialog simulation and optimization of thermal technological processes in which multiple 

calculations of temperature fields are performed specify rather strict requirements on the time of solution of the 

simulation problem. To reduce the time of calculation, numerical-analytical models in which part of the problem is 

solved by analytical methods are widely used. This approach allows one to accelerate the process of calculation due 

to some reduction in the universality of the numerical method. 

In what follows, a method of calculation of the temperature field of a two-layer infinite cylinder with 

variable dimensions in the presence of volumetric heat sources is suggested. 

Using the scheme presented in Fig. 1 we can describe: a) a metallic ingot of .radius RI with a scale layer 

R2 - Rl; b) a thermally massive cylinder artificially divided into two layers; c) a cylindrical body in which chemical 

reactions or phase conversions, e.g., moisture evaporation, take place. 

An analytical solution relating the initial and boundary conditions of the temperature field to the 

temperature distribution across the cylinder at the end of the computational time interval Ar is obtained for the 

scheme of heat transfer (Fig. 1). Due to this, calculation of the differential equation of heat conduction is replaced 

by solution of a system of ordinary differential equations. 

We assume that the temperature distribution in the cylinder layers at the end of the time interval of 
computation Az is described by the parabolas 

T 1 (X1) - a 0 + a2 X2 , X l = r / R  t , 0 <- X l <_ 1 , (1) 

T 2 (X2) = b 0 + b l X  2 + b 2 4 ,  X 2 = (r - R I ) / ( R  2 - R1), 0 -< X 2 __. 1. (2) 

The initial conditions are assigned by the mass-mean temperatures of the layers Tm,l,b, Tm,2,b. The bound- 

ary conditions for the temperature fields with account for relations (1) and (2) are written in the form 

~.lSTl 

R I S X  1 
- - - 0 ,  r = 0 ,  X l = 0 ;  (3) 

2~ 1 2 2 
ql  = ~ - -  a2 - R 2  - R l  bl r = R l  ' X I = I '  X 2 = O ;  (4) 
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Fig. 1. Ca lcu la t iona l  s c h e m e  of hea t  t r a n s f e r  in a t w o - l a y e r  cy l inder .  

T 1 (X 1 = 1) = T 2 (X 2 = 0) o r  a 0 + a 2 = b 0 , r = R 1 ; (s) 

~2 
q2 - R2 _ RI  (bl + 2b2) ,  X2 = 1, r = R 2 ,  (6) 

w h e r e  21, 22 a re  the  coeff ic ients  of  t h e r m a l  conduc t iv i ty  of the  l aye r s  (21 = ,ll (T) ,  .12 = *12(T)); q l ,  q2 a r e  the  hea t  

f luxes  (see Fig. 1). 

T h e  d y n a m i c s  of  the  va r i a t ion  of the  t e m p e r a t u r e  f ie lds  is desc r ibed  by  d i f fe ren t i a l  equa t ions  of  hea t  

ba l ance  p r e s e n t e d  in the  fo rm of f ini te  d i f ferences :  

dTm 1 Tm,l - Tm, l,b 2qm,l + Qch,1 4*lla2 Qch,1 
-- _ - -  - + (7) 

d r  Ar  C l g m ,  1 C 13rR2m,l CIRm, IR 1 C 1 .TrR2m,l ' 

dTm, 2 ~ Tin, 2 - Tin,2, b = 2 (qm,2Rm,2 - qm,iRm,1) + Och ,2 /~  = 
2 2 

dr  AT C 2 (Rm, 2 - Rm,.l ) 

2 (qm,2Rm,2 -- 2;tlRm,la2/Rl) -- Qch,2 /~  
2 2 

C2 (Rm,2 -- g in , l )  

whe re  qm,l, qm,2, Rm,l ,  Rm,2 a r e  the  m e a n  hea t  f luxes  and  radi i  of the  su r faces  for  the  t ime  in te rva l  At:  

qm,l = (ql + q l , b ) / 2 ,  qm,2 = (q2 + q2 ,b) /2  ; 

(8) 

(9) 

Rm, l = (R 1 + R 1 , b ) / 2 ,  Rm, 2 =  (R 2 +  R 2 , b ) / 2 ;  ( I0 )  

Cl -- C1 (T), C2 = C2(T)  a r e  the  m e a n  volumetr ic  hea t  capaci t ies  for  the  t ime in terva l  Ar  (J / (m a- K)) as  func t ions  

of the temperatures of layers; Qch,l, Qch,2 are the powers of the heat releases from the chemical reactions or phase 
conversions (W); Tm,l,b, Tm,2,b, Tin,l, Tin,2 are the mass-mean temperatures at the beginning (b) and end of the 
compu ta t i ona l  in terval :  

1 f T ( V )  d V =  a o + a 2 / 2 ;  (11) 
Tin, 1 - V1 v I 
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l f T (10 d V -  Tra'2 = -~2 V2 

1 
1 f 
- R b  o 

(b O+ blX + b2X 2) • 

X (R 1 + X ( R  2 - R I )  ) ( R  2 - R I )  d X =  b O+blS  1 + b2S 2; (12) 

S 1 = (R 1 + 2 R 2 ) / 3 ( R |  + R 2 ) ,  S 2 =  (R 1 + 3 R 2 ) / 6 ( R  1 + R2).  

For known initial and boundary conditions or ones taken as a first approximation the problem of calculation 

of the temperature field within AT is reduced to solution of a system of five linear equations in the coefficients ao, 

a2, bo, hi, b2 of the approximation of the temperature distribution across the cylinder. Compared to the known 

method of finite differences, even at this level of solution of the problem we can obtain a certain effect due to a 

reduction in the order  of the system of equations. A special choice of the system of spatial coordinates and  the form 
of the integrand allowed one to find an analytical solution for calculation of the heat transfer within the interval 

AT. 
We consider the order of solution of the system of equations (4)-(8) with account for (1), (2), (9)-(12). 

We express the coefficient bl from Eq. (4): 

221 R2 - R1 (13) 
b I - R1 ~ a2" 

We transform (6) accounting for (13): 

q2 (R2 - R1) 21 R2 - RI 
b2 - 222 ~2 Rl a2" 

(14) 

We find the coefficient ao from Eq. (7) with account for (13) and  (14): 

ao + a2/2 -- Tm,l,b 4'~1a2 Qch.l 
2 ' 

AT CIRm, tR1 Ct~Rm, 1 

transformation of which yields 

a 0--- Tin, l, b + - -  
ATQchA + 

2 
CI~:Rm, 1 C1Rm,IRI 

(15) 

We express the coefficient b0 from Eqs. (5) and (15): 

b0 Tm,l,b + ATQch,I ( 4AZ21 1" / (16) 
= 2 + " + a2" 

CI~Rm'I tC1Rm"IR1 

We substitute relation (12) in Eq. (8) with account for (13), (14), (16) and,  having t ransformed it, we 

obtain an expression for calculation of the coefficient a2: 

2 q  m 2Rm 2 AT + Qch,2 AT/7c Qch,1 AT q2 (R2 - RI) S-~] • 
a2 = ' ' 2 2 - Trn,l,b + Tm,2,b 2 

-- Rm,1) 222 C2 (Rm,2 CI~ZRm, 1 

[ I ' ' ] '  
• 421AT 2 2 + + - + (2S1 - $2) (17) 

2 (Rm,2 - Rm,1) C1Rm,IR1 2 22R 1 
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Fig. 2. Tempera tu re s  and  errors  of t empera tu re  calculation (d) for a cy l inder  

with radius R -- 0.2 m CA) (R1 -- 0.1, R2 = R -- 0.2) and  R -- 0.3 m (B) (R 1 ~ 

0.15, R 2 -- R -- 0.3) in radiative heating. 7', K; •, ~ ;  r ,  sec. 

Star t ing f rom calculation of a2, we can de termine  the remaining  coefficients of the parabol ic  t empe ra tu r e  

distr ibution by formulas  (13)-(16) and  then calculate any  tempera ture  in the cyl inder  cross section by (1) and  (2). 

The  m a s s - m e a n  tempera ture  of the entire cyl inder  is de te rmined  by the formula 

T m = [Tm,l R2 + Tm, 2 ( R  2 --  R ~ ) ] I R  2 . (18) 

The  dynamics  of the tempera ture- f ie ld  variation can be calculated by exist ing a lgor i thms for solution of 

o rd inary  differential  equations by a numerical  method.  As applied to problems of this type these  a lgor i thms are  

considered in [1, 2 ]. In [2 ] a technique for calculation of the thermal  effect of chemical react ions and  the dynamics  

of d imension variat ion caused by t ransformat ion  of substances  (e.g., steel oxidation) is descr ibed.  

To  test the solut ions  obta ined and  evaluate the error  of de terminat ion of the pa ramete r s  of the t empera tu re  

field and  the applicabili ty range of the method,  we calculated the radiative heat ing of a cy l inder  (or -- 4 .5-10 -8  

W / ( m  2- K 4) is the coefficient of radiat ive heat  t ransfer ,  Tg(r) = 1000 + 0.0625r is the gas t empera tu re )  with var iable  

thermophysica l  propert ies  (2 (73 = 40 - 0.01 T, C(T) -- 106(40 - 0.01 T) / (8-0 .002T)) .  T h e  mater ia l  of the  cyl inder  

layers was taken to be the same. 

The  errors  of calculation of the t empera ture  of the surface r = R 2 (~R) and  the the rma l  center  r ~ 0 (<5o) 

and  the m a s s - m e a n  t empera tu re  of the entile cyl inder  3m were de te rmined  by compar ing  the resul ts  of calculation 

by  the descr ibed method with the test  t empera ture  field found by the known method  of finite differences.  Changes  

in the dimensions  of the layers and  the heat  release were disregarded.  

Figure 2 shows the t empera tu re  fields of a cyl inder  with a radius R -- 0.2 m (R l --- 0.1, R2 -- 0.2) and  a 

cyl inder  with a radius R -- 0.3 m (RI -- 0.15, R2 --- 0.3); in the lower parts  of the figure the errors  of t empera tu re  

calculation are given. As follows f rom the figure, the errors of the calculation for a cyl inder  with a radius  R -- 0.2 

m do not exceed 0.5~o, and  for a cyl inder  with a radius R -- 0.3 m 0 . 8 ~ .  

The  er ror  of calculation of the mass -mean  temperature ,  de termining the main technical  and  economic 

characterist ics of the process of heat  t rea tment  of materials ,  was 0.1 ~o for R = 0.2 m and 0 . 2 ~  for R -- 0.3 m. 

On the basis of an analysis  of the results of calculation (other initial data  included) we can regard  the 

of the method to be limited by the Stark (Sk = oT~R/2t  < I) and  Biot (Bi = aR/2 t  applicabili ty range  <~ 2, where  

cr is the coefficient of convective heat  t ransfer)  numbers .  

Calculations performed with different values of AT showed that  the op t imum value of AT (at this value the 

error  of tempera ture- f ie ld  calculation is minimum) can be es t imated by the Fourier  n u m b e r  AFo -- a A + / R  2 = 

2 A r / ( C R 2 ) ,  which should be within the range 0.02 < AFo _< 0.05. 
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Use of the considered method of temperature-field calculation in modeling heating of materials allowed one 
to reduce considerably the labor consumption of the calculations and employ a more convenient dialog mode of 
personal-computer operation. 
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