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TEMPERATURE FIELD OF A TWO-LAYER
CYLINDER WITH VOLUMETRIC HEAT SOURCES
AND NONSTATIONARY BOUNDARIES

A. K. Sokolov UDC 536.21:669.041

A numerical-analytical solution of a differential heat-conduction equation is suggested. Analytical
expressions relating the initial and boundary conditions of heat transfer to parabolic temperature
distributions in the layers of the cylinder are obtained for the end of the calculated interval of time. The
calculation of the temperature field is reduced to the solution of a system of two ordinary differential
equations. The error of the solution is analyzed.

Systems of dialog simulation and optimization of thermal technological processes in which multiple
calculations of temperature fields are performed specify rather strict requirements on the time of solution of the
simulation problem. To reduce the time of calculation, numerical-analytical models in which part of the problem is
solved by analytical methods are widely used. This approach allows one to accelerate the process of calculation due
to some reduction in the universality of the numerical method.

In what follows, a method of calculation of the temperature field of a two-layer infinite cylinder with
variable dimensions in the presence of volumetric heat sources is suggested.

Using the scheme presented in Fig. 1 we can describe: a) a metallic ingot of radius R with a scale layer
Ry — Ry; b) a thermally massive cylinder artificially divided into two layers; ¢) a cylindrical body in which chemical
reactions or phase conversions, e.g., moisture evaporation, take place.

An analytical solution relating the initial and boundary conditions of the temperature field to the
temperature distribution across the cylinder at the end of the computational time interval Ar is obtained for the
scheme of heat transfer (Fig. 1). Due to this, calculation of the differential equation of heat conduction is replaced
by solution of a system of ordinary differential equations.

We assume that the temperature distribution in the cylinder layers at the end of the time interval of
computation At is described by the parabolas

T, (X)) = ag+ ayX;, X, =r/R, 0<X, =<1, )

Ty (Xy) = by + b, Xy + X5, Xp=(r—R)/(Ry~R)), 0=<X,=<1. )

The initial conditions are assigned by the mass-mean temperatures of the layers Ty 1 v, Tm,2,b- The bound-
ary conditions for the temperature fields with account for relations (1) and (2) are written in the form
R6X,

=0, r=0, X, =0; 3

24 42

Q=R Q=g R b T=R X =1, X =0; 4
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Fig. 1. Calculational scheme of heat transfer in a two-layer cylinder.

Tl(Xl=l)=T2(X2=O) or a0+a2=b0, r=R1; (5)

'12
q2=m(bl+2b2),X2=l,r=R2, (6)

where Ay, 4, are the coefficients of thermal conductivity of the layers () = 1;1(T), A3 =A2(T)); g1, gz are the heat
fluxes (see Fig. 1).

The dynamics of the variation of the temperature fields is described by differential equations of heat
balance presented in the form of finite differences:

Tt Tot = Tmib _ 2ma  Qena %M@ Qe )
dr At CiRy; CyaRay CRy R, Cy7R%,
dTm,Z ~ Tm,2 - Tm,2.b — 2 (qm,ZRm,Z - qm,IRm.l) + Qch,2/JI _
de Ar C; (R — Ry, 1)

_ 2 (qm,ZRm,2 - 2AlRm,laZ/Rl) - Qch,2/n (8)

= 2 2 )

C2 (Rm.z - Rm.l)
where gm,1, gm,2, Rm,1» Rp,2 are the mean heat fluxes and radii of the surfaces for the time interval At:

Im1 =@ + Q1 p)/ 2, Gna2=(a2+ a2)/2; )
Ryy =Ry + Ry )/2, Ryy=(Ry+ Ryp)/2; (10)

Ci = C1(T), Cy = C2(T) are the mean volumetric heat capacities for the time interval At (J/ (m®-K)) as functions
of the temperatures of layers; Qch,1, Qcn,2 are the powers of the heat releases from the chemical reactions or phase
conversions (W); T 1,60 Tm,2,b» Tm,1» Tm,2 are the mass-mean temperatures at the beginning (b) and end of the
computational interval:

T, 1=——1—f T(V)dV =ag+ ay/2; 1)
m, v v,
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1 1 d 2
Tm:V;J T(V)dV:—(m { (by + by X + b,X") x
2 TRy — Ry

X (R + X (Ry — R))) (Ry — R) dX = by + by S| + 5,8, ; (12)

For known initial and boundary conditions or ones taken as a first approximation the problem of calculation
of the temperature field within Az is reduced to solution of a system of five linear equations in the coefficients ay,
az, by, b1, by of the approximation of the temperature distribution across the cylinder. Compared to the known
method of finite differences, even at this level of solution of the problem we can obtain a certain effect due to a
reduction in the order of the system of equations. A special choice of the system of spatial coordinates and the form
of the integrand allowed one to find an analytical solution for calculation of the heat transfer within the interval
At

We consider the order of solution of the system of equations (4)-(8) with account for (1), (2), (9)-(12).

We express the coefficient b from Eq. (4):

i § 13
bl——Rl Taz. ( )

We transform (6) accounting for (13):

_ @Ry —R) A Ry -R 14
bz— uz '“1; R1 a . ( )

We find the coefficient ag from Eq. (7) with account for (13) and (14):

G+ ay2-Toip_ %% Qi

At CiRu Ry CiRly
transformation of which yields
ATQ 4ATA 1
o= Taip+ 5+ L ——| a. (15)

We express the coefficient by from Egs. (5) and (15):

ATQCh.,l + [ 4ATAI 1) a
.

2 t
CyeRy CiRy 1Ry 2

bo = Tm,l,b + (16)

We substitute relation (12) in Eq. (8) with account for (13), (14), (16) and, having transformed it, we
obtain an expression for calculation of the coefficient aj:

_ [24m 2R AT + Ocn AT/ 7 - Oen 1At @ (R — Ry) S
ay = 2 ) ~Toipt Tmap — o 2
Cy(Rp2— Ry 1) CinRy 2,
- -1
1 1 1 A (R,~ R
x |41,Ac - — + JL AR R @28, - S,) (17)
Cr(Rp2— Rp1) CiRy Ry 2 ARy
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Fig. 2. Temperatures and errors of temperature calculation (8) for a cylinder
with radius R=0.2m (4) (R;=0.1, R;=R=02)and R=03m (B) (R; =
0.15, R = R = 0.3) in radiative heating. T, K; 8, %; 1, sec.

Starting from calculation of a3, we can determine the remaining coefficients of the parabolic temperature
distribution by formulas (13)-(16) and then calculate any temperature in the cylinder cross section by (1) and (2).
The mass-mean temperature of the entire cylinder is determined by the formula

2 2
T = [Ty R + Ty (R — RDV/R;. (18)

The dynamics of the temperature-field variation can be calculated by existing algorithms for solution of
ordinary differential equations by a numerical method. As applied to problems of this type these algorithms are
considered in [1, 2]. In [2] a technique for calculation of the thermal effect of chemical reactions and the dynamics
of dimension variation caused by transformation of substances (e.g., steel oxidation) is described.

To test the solutions obtained and evaluate the error of determination of the parameters of the temperature
field and the applicability range of the method, we calculated the radiative heating of a cylinder (o = 4.5-1078
W/ (m?- K% is the coefficient of radiative heat transfer, Ty (r) = 1000 + 0.06257 is the gas temperature) with variable
thermophysical properties A(T) =40 — 0.01T, C(T) = 10%(40 — 0.017)/(8-0.002T)). The material of the cylinder
layers was taken to be the same.

The errors of calculation of the temperature of the surface r = R, (3g) and the thermal center r = 0 (J¢)
and the mass-mean temperature of the entile cylinder 8y, were determined by comparing the results of calculation
by the described method with the test temperature field found by the known method of finite differences. Changes
in the dimensions of the layers and the heat release were disregarded.

Figure 2 shows the temperature fields of a cylinder with a radius R = 0.2 m (R; = 0.1, R; =0.2) and a
cylinder with a radius R = 0.3 m (R} = 0.15, R3 = 0.3); in the lower parts of the figure the errors of temperature
calculation are given. As follows from the figure, the errors of the calculation for a cylinder with a radius R = 0.2
m do not exceed 0.5%, and for a cylinder with a radius R =0.3 m 0.8%.

The error of calculation of the mass-mean temperature, determining the main technical and economic
characteristics of the process of heat treatment of materials, was 0.1% for R =0.2 m and 0.2% for R = 0.3 m.

On the basis of an analysis of the results of calculation (other initial data included) we can regard the
applicability range of the method to be limited by the Stark (Sk = aTgR//l < 1) and Biot (Bi = aR/A < 2, where
a is the coefficient of convective heat transfer) numbers.

Calculations performed with different values of At showed that the optimum value of At (at this value the
error of temperature-field calculation is minimum) can be estimated by the Fourier number AFo = alAt/R? =
AAt/(CR?), which should be within the range 0.02 < AFo < 0.05.
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Use of the considered method of temperature-field calculation in modeling heating of materials allowed one

to reduce considerably the labor consumption of the calculations and employ a more convenient dialog mode of
personal-computer operation.

REFERENCES

1. A.K.Sokolov, Izv. VUZov i EO SNG, Nos. 5-6, 75-80 (1994).
2. A. K. Sokolov, Inzh.-Fiz. Zh., 68, No. 2, 337-338 (1995).

83



